Rapid-Solidified Metallic Actuator Materials Developed by Electromagnetic Nozzleless Melt Spinning Method

Author:

Furuya Y.

Abstract

AbstractElectro-magnetic nozzleless melt-spinning method was developed by combining the control of the flow down of the molten metals after electromagnetic float-melting(i.e. levitation) with rapid solidification by rotating roll. The metallurgical grain microstructures can be changed by rotating roll speed. It was confinned that the produced, intermetallic TiNi and NiAl system alloy thin plates showed the strong crystal anisotropy, higher shape memory functional properties than those of the conventionally processed melt-worked samples having its same origin. As new SMAs by using this method, ferromagnetic shape memory, FePd alloy having very large magnetostriction and super high temperature shape memory, RuTa alloy having the transformation over 1000°C were developed. Moreover, our recent study on the advanced rapid-solidification machine to produce many kinds of short fibers as well as ribbons is introduced. Finally, harmonic material design for sensor/actuator stacking composite system, namely “Smart Board” for aircraft structures will be introduced.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. (3) Sater J. : EF Conf. for Adaptive Composite (Banffs, 1997, July) and N.Hagood(AMSL/MIT) (Introduction of AMSL/MIT, Nov. 1997)

2. Giant Strain by Magnetically Induced Phase Transformation in Rapidly Solidified, Melt-spun Shape Memory Fe-Pd Alloy

3. (6) Vasilev A. , Bozhko A. , Khovalia V. , Takagi T. , Tani J. , Matsumoto M. and Suzuki S. ; Int.Symp.Non-linear Electromagnetic Systems(ISEM'97)ppWPAI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3