Enhancement of Porosity and Surface Roughness of Cured Phenolic Resin by Ion Implantation

Author:

Zimmerman R.L.,Ila D.,Smith C.C.,Evelyn A.L.,Poker D.B.,Hensley D.K.

Abstract

AbstractWe present recent results using ions such as C., O, Si, Fe, Zn, and Au at energies between 100 keV to 10 MeV to increase the roughness and porosity of the partially and fully cured precursor phenolic resins. The fully cured phenolic resin is called Glassy Polymeric Carbon (GPC). GPC is chemically inert, biocompatible and useful for medical applications, such as heart valves and other prosthetic devices. Ion implantation enhances biological cell/tissue growth on, and tissue adhesion to, prosthetic devices made from GPC. We have previously shown that increased porosity of GPC is also useful for drug delivery devices. The porosity of the ion implanted partially and fully cured precursor phenolic resins was measured by introducing lithium from a molten LiCl salt into each sample. By using Li(p,2α) nuclear reaction analysis (NRA) we measured the concentration of Li retention in the pre- and post-implanted samples. The surface roughness was measured using optical microscopy. The curing process was monitored using micro-Raman microscopy. We have correlated the NRA measurements of increased pore availability with the observations of increased surface roughness.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3