Ar Cluster Ion Bombardment Effects on Semiconductor Surfaces

Author:

Seki Toshio,Tsumura Kazumichi,Aoki Takaaki,Matsuo Jiro,Takaoka Gikan H.,Yamada Isao

Abstract

AbstractNew surface modification processes have been demonstrated using gas cluster ion irradiations because of their unique interaction between cluster ions and surface atoms. For example, high quality ITO films could be obtained by O2 cluster ion assisted deposition at room temperature. It is necessary to understand the role of cluster ion bombardment during film formation for the further developments of this technology. Variable Temperature Scanning Tunneling Microscope (VT-STM) in Ultra High Vacuum (UHV) allows us to study ion bombardment effects on surfaces and nucleation growth at various temperatures.The irradiation effects between Ar cluster ion and Xe monomer ion were compared. When a Si(111) surface with Ge deposited to a few Å was annealed to 400°C, it was observed that many islands of Ge were formed. The surface with the Ge islands was irradiated by these ions. In the STM image of cluster-irradiated surface, large craters with diameter of about 100 Å were observed, while only small traces with diameter of about 20 Å were observed in monomer-irradiated surface. The number of Ge atoms displaced by one Ar cluster ion impact was much larger than that by one Xe ion impact. This result indicates that Ar cluster ion impacts can enhance the physical modification of Ge islands. When the sample irradiated with Ar cluster was annealed at 600°C, the hole remained, but the outer rim of the crater disappeared and the surface structure was reconstructed at the site of the rim. The depth of damage region in the target became shallower with decrease of the impact energy. These results indicate that low damage and useful surface modification can be realized using the cluster ion beam.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3