Effects of Ga-Irradiation On Properties of Materials Processed by A Focused Ion Beam (FIB)

Author:

Wanzenboeck H. D.,Langfischer H.,Lugstein A.,Bertagnolli E.,Grabner U.,Pongratz P.,Basnar B.,Smoliner J.,Gornik E.

Abstract

AbstractFocused Ion Beam (FIB) technology allows to process various materials within a lateral range below 100 nm. The feasibility to mechanically sputter as well as to direct-write nanostructures and the fact that Ga-ions are utilized is unique for this method. The focused Ga-ions are used to locally induce a chemical vapor deposition of volatile precursor molecules adsorbed on a surface. Local deposition of metals and dielectrics has been achieved on a sub-µm scale utilizing a focused ion beam. This method is highly suitable for advanced microelectronic semiconductor fabrication. However, material specifications are narrow for these tailor-made applications. The effect of the Ga-ions implanted into the material both during sputtering and deposition has been realized as a key parameter for the function of FIB processed microelectronic devices. For Si-based semiconductors Ga can be used as dopant intentionally implanted into a Si substrate to locally modify the conductivity of Si. The results of locally confined ion irradiation on the surface roughness of a Si surface have been exploited by atomic force microscopy (AFM). Both local sputter depletion of the sample surface as well as sub-µm deposition of selected metals or dielectrics by ion-induced chemical vapor deposition (CVD) has been examined. The penetration depth and the distribution of Ga ions during the deposition process have been studied by simulation and experimentally by profiling with secondary ion mass spectroscopy (SIMS). Transmission Electron Microscopy (TEM) of cross-sections of the ion processed materials has revealed amorphisation of the crystalline substrate. For focused ion beam assisted deposition the effects of ion irradiation on the interface to the substrate and the local efficiency of the deposition are illustrated and discussed. The prospects of focused ion beam processing for modification of microelectronic devices in the sub-µm range and the limitations are demonstrated by the examples shown.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference20 articles.

1. Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition

2. 9. Abramo M. , Hahn L. , and Moszkowicz L. , ISTFA '94. Proceedings of the 20th International Symposium for Testing and Failure Analysis 1994 xiii+505 (1994).

3. Estimation of Damage Induced by Focused Ga Ion Beam Irradiation

4. Gate oxide breakdown by focused ion-beam irradiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3