Controlling The Lateral Photoeffect In a-Si:H Heterojunction Structures: The Influence of The Band Offset Analysed Through A Numerical Simulation

Author:

Fantoni A.,Fernandes M.,Louro P.,Schwarz R.,Vieira M.

Abstract

ABSTRACTWhen an a-Si:H p-i-n structure is locally illuminated by a light spot, the non uniformity of light causes the appearance of a gradient in the carrier concentration between the illuminated and the dark zone. Carrier start to flow in agreement with such gradients, and when equilibrium is reached, the lateral diffusion process is counterbalanced by the appearance of a lateral component of the electric field vector in addition to the transverse usual one. The lateral fields act as a gate for the lateral flow of the carriers and small lateral currents appears at the transition region between the illuminated and the dark zone.Such lateral photoeffect depends on the incident light wavelength, light intensity and on the device operation condition (mainly the applied bias). The introduction of carbon in the doped layers modifies the intensity and the extension of these lateral effects through the potential barriers deriving from the band banding at the interfaces.We have used the 2D numerical simulator ASCA to analyze the behavior of an a-Si:H p-i-n structure under local illumination with the goal of observing the appearance of the lateral components of the electric field and current density vectors. Different homo and heterojunctions have been simulated, outlining how the band offset at the interfaces influences the induced lateral photoeffect and aiming to explain how a correct device design and engineering can, depending on the foreseen application, alternatively enhance or reduce the intensity of such lateral effects.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3