Modelling Glass Dissolution with a Monte Carlo Technique

Author:

Aertsens Marc,Iseghem Pierre Van

Abstract

AbstractWe present a Monte Carlo simulation method for modelling glass dissolution in aqueous solutions. This simulation method is consistent with transition state theory, and therefore also with the glass dissolution rate law, used for instance in the Grambow model. The simulation method allows to add dynamics (kinetics) to the existing thermodynamic models for glass dissolution. Using this method, it is possible to model non stoichiometric dissolution of the glass.Besides, we introduce a simple, first version of a model in which we use the simulation method. In this model, we approximate the glass by a lattice. We assume that the glass contains two components: a network former and a network modifier. Bonds between two network formers are assumed to be much stronger than any other bond in the system. We observe that above a threshold value for the concentration of network modifiers, the glass dissolves fast. No surface layer develops and the dissolution rate is constant (linear stoichiometric dissolution). Below this threshold, the glass is more durable and surface layers are formed. As time goes on, the thickness of the surface layers grows. The dissolution of the glass is not stoichiometric. This behaviour agrees with experimental results.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference11 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Na/K–Cl Salts on Hydrolysis of Aluminosilicate Glass Using Ab Initio Molecular Dynamics;The Journal of Physical Chemistry B;2024-03-06

2. Chemical transformations and transport phenomena at interfaces;WIREs Computational Molecular Science;2022-10-18

3. Simulations of Glass–Water Interactions;Atomistic Simulations of Glasses;2022-04

4. Patchy particle model of hydrated amorphous silica;Journal of Non-Crystalline Solids;2021-03

5. Model-driven design of bioactive glasses: from molecular dynamics through machine learning;International Materials Reviews;2019-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3