Artificial intelligence for materials research at extremes

Author:

Maruyama B.ORCID,Hattrick-Simpers J.,Musinski W.,Graham-Brady L.,Li K.,Hollenbach J.,Singh A.,Taheri M. L.

Abstract

AbstractMaterials development is slow and expensive, taking decades from inception to fielding. For materials research at extremes, the situation is even more demanding, as the desired property combinations such as strength and oxidation resistance can have complex interactions. Here, we explore the role of AI and autonomous experimentation (AE) in the process of understanding and developing materials for extreme and coupled environments. AI is important in understanding materials under extremes due to the highly demanding and unique cases these environments represent. Materials are pushed to their limits in ways that, for example, equilibrium phase diagrams cannot describe. Often, multiple physical phenomena compete to determine the material response. Further, validation is often difficult or impossible. AI can help bridge these gaps, providing heuristic but valuable links between materials properties and performance under extreme conditions. We explore the potential advantages of AE along with decision strategies. In particular, we consider the problem of deciding between low-fidelity, inexpensive experiments and high-fidelity, expensive experiments. The cost of experiments is described in terms of the speed and throughput of automated experiments, contrasted with the human resources needed to execute manual experiments. We also consider the cost and benefits of modeling and simulation to further materials understanding, along with characterization of materials under extreme environments in the AE loop. Graphical abstract AI sequential decision-making methods for materials research: Active learning, which focuses on exploration by sampling uncertain regions, Bayesian and bandit optimization as well as reinforcement learning (RL), which trades off exploration of uncertain regions with exploitation of optimum function value. Bayesian and bandit optimization focus on finding the optimal value of the function at each step or cumulatively over the entire steps, respectively, whereas RL considers cumulative value of the labeling function, where the latter can change depending on the state of the system (blue, orange, or green).

Funder

UES, Inc.

U.S. Department of Energy

Office of Naval Research

Air Force Research Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3