Abstract
AbstractThe local stress state and microstructure near the crack-tip singularity control the fracture process. In ductile materials multiple toughening mechanisms are at play that dynamically influence stress and microstructure at the crack tip. In metals, crack-tip shielding is typically associated with the emission of dislocations. Therefore, to understand crack propagation on the most fundamental level,in situtechniques are required that are capable to combine imaging and stress mapping at high resolution. Recent experimental advances in x-ray diffraction, scanning electron microscopy, and transmission electron microscopy enable quantifying deformation stress fields from the bulk level down to the individual dislocation. Furthermore, through modern detector technology the temporal resolution has sufficiently improved to enable stress mapping duringin situexperiments.Graphical abstract
Funder
Austrian Science Fund
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Provincial Department of Education
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献