Revealing dynamic-mechanical properties of precipitates in a nanostructured thin film using micromechanical spectroscopy

Author:

Alfreider MarkusORCID,Meindlhumer Michael,Ziegelwanger Tobias,Daniel Rostislav,Keckes Jozef,Kiener Daniel

Abstract

Abstract Nanostructured materials with their remarkable properties are key enablers in many modern applications. For example, industrial dry-milling processes would not be as widely spread without the use of hard, wear-resistant metal nitride coatings to protect the cutting tools. However, improving these nanostructured thin films with regard to dynamical properties is demanding as probing respective parameters of (sub-)micron layers without any substrate influence is still challenging. To extend the scientific toolbox for such spatially confined systems, a novel methodological approach based on resonance peak measurements of a cantilever-transducer system termed micromechanical spectroscopy (µMS) is developed and applied to a Al0.8Cr0.2N model system. The mainly wurtzite type supersaturated Al0.8Cr0.2N system showed precipitation of cubic CrN at grain boundaries and local Cr variations upon annealing at 1050°C. This was accompanied by an increase in the previously unknown damping capability of 63 percent and an increase in Young’s modulus by 36 percent. Impact statement There is a wide variety of applications for nano- to micrometer-sized thin films in today’s engineering technology, from thermal barrier- and wear-resistant coatings in turbines and bearings, over diffusion barriers and heatsinks in microelectronic devices, to optically active layers in lasers or mirrors. The mechanical properties of such thin films are oftentimes governed by their thermal history, leading to either intentional or undesired changes in the microstructure (e.g., the formation of precipitates). While the investigation of such features is usually constricted to static analysis using high-resolution techniques, such as transmission electron microscopy, understanding their impact on dynamic properties of the film remains a challenge. However, these are highly relevant in many engineering applications where cyclic behavior is common, such as high-speed dry milling. In the present work, we investigate the change in mechanical damping capability upon annealing of a 6-µm thin AlCrN film, commonly used in demanding dry-milling applications, using micromechanical spectroscopy (µMS) of cantilever-shaped specimens. After a carefully adjusted heat treatment, the film exhibits the formation of cubic CrN precipitates in an otherwise wurtzite AlCrN matrix, which leads to a previously unknown beneficial increase in damping capability of the film. Graphical abstract

Funder

H2020 European Research Council

Ministerstvo Školství, Mládeže a Tělovýchovy

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3