Abstract
AbstractNeuroelectronic devices are essential tools in neuroscience research, diagnosis, and/or treatment of neurological diseases, as well as in neuro-prosthetics and brain–computer interfaces. Despite a long history of application, neuroelectronic devices are still facing challenges of unsatisfactory chronic stability and a lack of understanding of cellular mechanisms for recording and stimulation. To improve the information transfer between the neural tissue and electronic devices, a comprehensive understanding of the biological activities around the neural electrode is critical. In vivo fluorescent microscopy technologies are rapidly developing and have revolutionized our understanding of cellular dynamics in response to neural interfacing materials. Here, we will provide an overview of the in vivo fluorescence microscopy systems and imaging configurations for studying the neural electronic interface, as well as recent findings in biological mechanisms learned using these advanced optical imaging modalities. Finally, we will discuss the current challenges and future directions.
Graphical abstract
Funder
National Institute of Neurological Disorders and Stroke
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献