Sequence-specific response of collagen-mimetic peptides to osmotic pressure

Author:

Ruiz-Rodriguez LorenaORCID,Loche PhilipORCID,Hansen Lise Thornfeldt,Netz Roland R.ORCID,Fratzl PeterORCID,Schneck EmanuelORCID,Blank Kerstin G.ORCID,Bertinetti LucaORCID

Abstract

Abstract Native collagen molecules usually contract upon dehydration, but the details of their interaction with water are poorly understood. Previous molecular modeling studies indicated a spatially inhomogeneous response, with a combination of local axial expansion and contraction. Such sequence-dependent effects are difficult to study with native collagen. In this article, we use collagen-mimetic peptides (CMPs) to investigate the effect of osmotic pressure on several collagen-mimetic sequences. Synchrotron x-ray diffraction combined with molecular dynamics simulations shows that CMPs pack differently depending on osmotic pressure and exhibit changes in the helical rise per residue of individual molecules. Infrared spectroscopy reveals that osmotic pressure affects the stability of the triple helix through changes in triple helix-stabilizing hydrogen bonds. Surprisingly, CMPs with the canonical collagen sequence glycine–proline–hydroxyproline are found to elongate upon dehydration, while sequence modifications are able to reverse this tendency. This strongly suggests that the overall contraction of native collagen molecules is not programmed into the canonical sequence but is specific to local amino acids that substitute for proline or hydroxyproline along the protein chain. Collagen is an essential protein in mammalian extracellular tissues and a better understanding of its mechanical function is important both from a materials science and from a biomedical viewpoint. Recently, collagen has been shown to contract along the fibre direction when subjected to osmotic stress, a process that could play important roles in strengthening bone and in developing tissue tension during extracellular matrix development. The present work uses collagen-like short peptides to show that the canonical collagen sequence is not responsible for this contraction. The conclusion is that the collagen amino acid sequence must have evolved to include guest sequences within the canonical glycine-proline-hydroxyproline repeat that provide the observed contractility. Impact statement Collagen is an essential protein in mammalian extracellular tissues and a better understanding of its mechanical function is important both from a materials science and from a biomedical viewpoint. Recently, collagen has been shown to contract along the fibre direction when subjected to osmotic stress, a process that could play important roles in strengthening bone and in developing tissue tension during extracellular matrix development. The present work uses collagen-like short peptides to show that the canonical collagen sequence is not responsible for this contraction. The conclusion is that the collagen amino acid sequence must have evolved to include guest sequences within the canonical glycine-proline-hydroxyproline that provide the observed contractility. Graphic Abstract

Funder

Max Planck Institute for Colloids and Interfaces (MPIKG)

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3