Electrification of the chemical industry—materials innovations for a lower carbon future

Author:

Eryazici IbrahimORCID,Ramesh Narayan,Villa CarlosORCID

Abstract

Abstract The chemical industry contributes to 6% of global anthropogenic greenhouse gas (GHG) emissions. A handful of chemical processes (ammonia, nitric acid, methanol, olefins, aromatics, and chlor-alkali) account for 65% of those emissions. Decarbonization of the chemical industry will depend on addressing the intermittency of renewable electricity possibly via low-carbon hydrogen production using water electrolysis. A low-carbon power grid, which could happen in the next decade, would enable the chemical industry to reduce its GHG emissions by at least 35 percent. The remaining heat-based and direct emissions could be addressed by direct use of low-carbon electricity for heat or by generating hydrogen that can be used as a fuel and reducing agent coupled with CO2 capture and utilization efforts. Herein, we discuss how materials innovations could enable the transition to a lower carbon future when based on first-principles and economic realities. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference32 articles.

1. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, J.C. Minx, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge, University Press, New York, 2014). https://www.ipcc.ch/report/ar5/wg3/

2. B. Bajželj, J.M. Allwood, J.M. Cullen, Designing climate change mitigation plans that add up. Environ. Sci. Technol. 14(47), 8062 (2013). https://doi.org/10.1021/es400399h

3. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, B. Weidema, The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life. Cycle Assess. 9(21), 1218 (2016). https://doi.org/10.1007/s11367-016-1087-8

4. S. Brueske, R. Sabouni, C. Zach, H. Andres, U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis (US Department of Energy, Washington, DC, 2012). https://www.energy.gov/sites/default/files/2013/11/f4/energy_use_and_loss_and_emissions.pdf

5. US Energy Information Administration (EIA), Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021 (2021). https://www.eia.gov/outlooks/aeo/electricity_generation.php

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3