Large bandgap insulating superior clay nanosheets

Author:

Pacakova BarbaraORCID,Vullum Per Erik,Kirch Alexsandro,Breu Josef,Miranda Caetano Rodrigues,Fossum Jon Otto

Abstract

Abstract One can find conductive, semiconducting, and insulating single nanosheets with unique electronic properties that are tied to their two-dimensional (2D) structure. Here, we report on wide-bandgap 2D insulator nanosheets obtained by delamination of a synthetic 2D fluorohectorite clay mineral showing one of the largest bandgap insulators in the world. The bandgap was determined experimentally to be up to 7.1–8.2 eV measured by electron energy-loss spectroscopy in a high-resolution transmission electron microscope. The experimental data were supported by DFT calculations giving a bandgap of 5.5 eV. The single fluorohectorite clay crystalline nanosheets are 0.95-nm, and they can be synthetized with high-aspect ratios and lateral dimensions up to dozens of microns. These properties render these nanosheets promising candidates for practical applications in manually assembled or self-assembled electronic heterostructures, potentially serving as insulating nanosheets in graphene or various (semi)conductive 2D material-based devices. Impact statement Properties of the synthetic fluorohectorite clay presented in this article render these 0.95-nm-thin nanosheets promising candidates for practical applications in manually assembled or self-assembled electronic heterostructures, potentially serving as insulating nanosheets in graphene or various (semi)conductive 2D material-based devices. The information provided in this work can be essential for the growing community focused on the study of 2D materials and their wide range of applications. Graphical abstract

Funder

Norges Forskningsråd

RCGI

Centre for Scientific Computing

Deutsche Forschungsgemeinschaft

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3