Abstract
Abstract
One can find conductive, semiconducting, and insulating single nanosheets with unique electronic properties that are tied to their two-dimensional (2D) structure. Here, we report on wide-bandgap 2D insulator nanosheets obtained by delamination of a synthetic 2D fluorohectorite clay mineral showing one of the largest bandgap insulators in the world. The bandgap was determined experimentally to be up to 7.1–8.2 eV measured by electron energy-loss spectroscopy in a high-resolution transmission electron microscope. The experimental data were supported by DFT calculations giving a bandgap of 5.5 eV. The single fluorohectorite clay crystalline nanosheets are 0.95-nm, and they can be synthetized with high-aspect ratios and lateral dimensions up to dozens of microns. These properties render these nanosheets promising candidates for practical applications in manually assembled or self-assembled electronic heterostructures, potentially serving as insulating nanosheets in graphene or various (semi)conductive 2D material-based devices.
Impact statement
Properties of the synthetic fluorohectorite clay presented in this article render these 0.95-nm-thin nanosheets promising candidates for practical applications in manually assembled or self-assembled electronic heterostructures, potentially serving as insulating nanosheets in graphene or various (semi)conductive 2D material-based devices.
The information provided in this work can be essential for the growing community focused on the study of 2D materials and their wide range of applications.
Graphical abstract
Funder
Norges Forskningsråd
RCGI
Centre for Scientific Computing
Deutsche Forschungsgemeinschaft
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献