Author:
Liu Z.Q.,Hashimoto H.,Sakata T.,Mori H.,Song M.,Mitsuishi K.,Furuya K.
Abstract
An iron nitride sample was irradiated by 2-MeV electrons intermittently for 2100 s with a dose rate of 6.3 × 1024 e.m.−2 s−1 inside a 3-MV high-voltage transmission electron microscope. The electron-stimulated oxidation of Fe4N and Fe2–3N was investigated in situ and ex situ using conventional transmission electron microscopy and high-resolution electron microscopy. It was found that both Fe4N and Fe2–3N nitrides were oxidized by the residual gas in the vacuum chamber to form Fe3O4 oxides. The orientation relationship between Fe4N (γ′) and Fe3O4 (o) was (110)γ′//(220)o, [001]γ′//[001]o, and that between Fe2–3N (ϵ) and Fe3O4 (o) was (110)ϵ//(−220)o, [1–11]ϵ//[001]o. Crystal lattice deformation from iron nitride to iron oxide took place during the dynamic oxidation process. Structural models were proposed to understand the oxide formation, and the models were confirmed by experimental observations. The irradiation effects of Fe4N and Fe2–3N crystals were compared. The results show that Fe4N is more sensitive than Fe2–3N to electron irradiation. These results are important not only for the fabrication of insulating iron oxide film, but also in the field of the surface modification of iron nitride to improve its mechanical properties.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献