Author:
Hakamada Masataka,Nomura Tatsuho,Yamada Yasuo,Chino Yasumasa,Hosokawa Hiroyuki,Nakajima Takeshi,Chen Youqing,Kusuda Hiromu,Mabuchi Mamoru
Abstract
Compressive properties at 573–773 K of porous aluminum produced by the spacer method were investigated and compared with those of bulk reference aluminum with the same chemical compositions. The stress exponent and activation energy for deformation at elevated temperatures in the porous aluminum were in agreement with those in the bulk reference aluminum. In addition, the plateau stress of the porous aluminum was comparable to the stress of the bulk reference aluminum upon compensation by the relative density. Therefore, it is conclusively demonstrated that the mechanism of deformation at elevated temperatures in the porous aluminum is the same as that in the bulk reference aluminum. This is likely due to the homogeneous microstructure in the porous aluminum produced by the spacer method.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献