Shape and Internal Structure of Silver Nanoparticles Embedded in Glass

Author:

Hofmeister H.,Tan G.L.,Dubiel M.

Abstract

The structural characteristics of silver nanoparticles embedded in glass by various routes of fabrication were studied in detail using high-resolution electron microscopy to find out if they are influenced by interaction with the surrounding glass matrix. Besides the formation conditions, the strength of the interaction between metal and glass governs the size-dependent changes of lattice spacings in such nanoparticles. However, determination of these changes is not straightforward because of complicated particle configurations and the interference nature of the lattice imaging technique. Imaging of lattice plane fringes and careful diffractogram analysis allowed the exclusion of any kind of tetragonal lattice distortion or transformation to hexagonal lattice type that may be deduced at first sight. Instead, the formation of twin faults in these nanoparticles turned out to be the essential structural feature and the main source of confusion about the lattice structure observed. The variety of particle forms is comparable to particles supported on oxide carriers. It is composed of single-crystalline particles of nearly cuboctahedron shape, particles containing single twin faults, multiple twinned particles containing parallel twin lamellae, and multiple twinned particles composed of cyclic twinned segments arranged around axes of 5-fold symmetry. The more twin planes involved in the particle composition, the more complicated is the interpretation of lattice spacings and lattice fringe patterns due to superposition of several twin segments.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3