Copper(I) Halide Nanoparticle-dispersed Glasses Prepared by Copper Staining

Author:

Kadono Kohei,Suetsugu Tatsuya,Ohtani Takeshi,Einishi Toshihiko,Tarumi Takashi,Yazawa Tetsuo

Abstract

Copper(I) chloride and bromide nanoparticle-dispersed glasses were prepared by means of a conventional copper staining. The staining was performed by the following process: copper stain was applied on the surfaces of Cl- or Br-ion-containing borosilicate glasses, and the glasses were heat-treated at 510 °C for various times. Typical exciton bands observed in the absorption spectra of the glasses after the heat treatment indicated that CuCl and CuBr particles were formed in the surface region of the glasses. The average sizes of the CuCl and CuBr particles in the glasses heat-treated for 48 h were estimated at 4.8 and 2.7 nm, respectively. The nanoparticles were also characterized by x-ray diffraction and transmission electron microscopy. Depth profiles of Cu and CuBr concentration in the glass heat-treated for 48 h were measured. Copper decreased in concentration monotonously with depth, reaching up to 60 μm, while the CuBr concentration had a maximum at about 25 μm in depth.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference35 articles.

1. The thermal expansion of silver iodide and the cuprous halides

2. Copper Alkali Ion Exchange of Alkali Aluminosilicate Glasses in Copper-Containing Molten Salt: II, Divalent Copper Salts, CuCl2 and CuSO4

3. Copper Alkali Ion Exchange of Alkali Aluminosillcate Glasses in Copper-Containing Molten Salt: I, Monovalent Copper Salt, CuCl

4. 27 Kadono K. , Yazawa T. , Einishi T. , Yoshioka S. , and Tarumi T. : Formation of copper(I) halide nanoparticles on the glass surfaces by ion-exchange method—dependence on the glass composition, in Proceedings of the 16th International Japan–Korea Seminar in Ceramics, Okayama, Japan, 1999. p. 158.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3