Preparation and tribological properties of SiC/rice bran carbon composite ceramics

Author:

Zhou You,Hirao Kiyoshi,Yamaguchi Takeshi,Hokkirigawa Kazuo

Abstract

Silicon carbide (SiC) ceramics have good wear resistance but poor friction properties under dry sliding conditions. To lower the friction of SiC, a novel porous carbon material called rice bran carbon (RBC) was added into SiC to make SiC/RBC composite ceramics. The SiC/RBC composites were prepared by mixing one of three kinds of RBC powders having different particle sizes and a fine SiC doped with Al4C3and B4C additives and sintering at 1600 °C for 5 min by a pulse electric current sintering (PECS) method. The mechanical and tribological properties of the SiC/RBC composites were evaluated and compared with those of monolithic SiC, monolithic RBC bulk material, and SiC/graphite composite. The SiC/RBC composites not only had superior fracture strength (3–4 times as high as that of the monolithic RBC material) but also showed low friction coefficients (around 0.25) and high wear resistance (at a level of 10−6mm3N−1m−1) when slid against a silicon carbide ceramic counterface during block-on-ring sliding tests under dry conditions. Compared with the conventional SiC/graphite composite, the SiC/RBC composites had higher mechanical strength, lower friction coefficients, and better wear resistance.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Silicon Carbide Ceramics—1

2. The relationship between wear behaviour and brittleness index in engineering ceramics and dispersed-reinforced ceramic composites;Boccaccini;Interceram.,1999

3. Wear-resistant materials: into the next century

4. Wear map of ceramics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3