Structure Development in Polyimide Films

Author:

Coburn John C.,Pottiger Michael T.,Pryde Coralie A.

Abstract

ABSTRACTThe influence of processing conditions on the structure and properties in spin coated polyimide films prepared from flexible, semi-rigid and rigid chemistries was investigated. While the relationship between processing, structure and properties is different for each chemistry, some general trends were observed. Curing above the glass transition in the flexible polyimide BTDA//ODA/MPD, that is incapable of crystallizing and has very little in-plane orientation, has virtually no effect on the structure or properties compared to curing below the glass transition. Curing at temperatures above the glass transition in cry stall izable stiff polyimides such as BPDA//PPD and PMDA//ODA results in an increase in birefringence, in-plane CTE and biaxial stress. In BPDA//PPD, the increase in birefringence is attributed to an increase in polarizability and possibly, an increase in the overall in-plane alignment of the imide ring as evidenced by IR analysis. The increase in in-plane CTE is attributed to a loss in chain axis orientation caused by relaxation effects. The increase in stress is attributed to the increase in the in-plane CTE and also from shrinkage forces arising from crystallization. Rapid heating during cure in the flexible amorphous BTDA//ODA/MPD has essentially no effect on structure or properties compared to slow heating. In the semi-crystalline polyimides, rapid heating during cure leads to higher levels of crystallinity and significantly higher stresses. The increase in stresses is attributed to a loss in chain axis orientation in the plane of the film and shrinkage forces arising from additional crystallization. The directional dependence of the coefficient of thermal expansion, an important functional property, is extremely sensitive to molecular anisotropy. BTDA//ODA/MPD, which is almost isotropic, has an out-of-plane CTE that is approximately 20 percent higher than the in-plane CTE. In contrast, the out-of-plane CTE for the most anisotropic polyimide in this study, BPDA//PPD, is 25 times larger than the in-plane CTE. This sensitivity of the CTE to molecular orientation must be taken into account when modeling stress in, or designing, electronic devices.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3