Surface Diffusion and Nucleation Processes in Thin Film Formation: The Case of Ag/Si(111)

Author:

Venables J. A.,Doust T.,Kariotis R.

Abstract

ABSTRACTSurface diffusion and crystal growth processes have been studied in the Stranski-Krastanov growth system Ag/Si(111), using several UHV-SEM techniques. By depositing Ag at various rates 0.2 ≤ R ≤ 1.4 ML-min−1 through a mask of holes, surface diffusion of Ag over the intermediate layer has been observed, in competition with re-evaporation at high, and nucleation at low substrate temperatures, in the range 620 < T < 850K. The Si(111) √3Ag intermediate layer has been visualized using biassed secondary electron imaging. The surface diffusion and nucleation processes observed have been analyzed in terms of kinetic models. Comparison with experiment yields values for the adsorption, diffusion and binding (Ea′ Ed and Eb) energies of Ag on the intermediate layer. These values are approximately Ea = 2.45 ± 0.1 eV, Ed 0.35 ± 0.05 eV and Eb = 0.10 ± 0.03 eV, where the uncertainties result at least as much from lack of knowledge of pre-exponential factors in the models as in the accuracy of the experiments.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Basic Process of Sputtering Deposition;Handbook of Sputtering Technology;2012

2. Thin Film Processes;Thin Film Materials Technology;2004

3. Rate and diffusion analyses of surface processes;Journal of Physics and Chemistry of Solids;1994-10

4. Optimization of growth conditions of vapor deposited Mo/Si multilayers;Journal of Applied Physics;1992-01

5. Temperature-dependent coverage of the √3 × √3R30° structure of Ag/Si(111);Physical Review B;1991-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3