Nanoscale Sn Inclusions in Al – Structure and Melting-Solidification Properties

Author:

Johnson E.,Bahl C.R.H.,Touboltsev V.S.,Johansen A.

Abstract

AbstractAl-Sn surface alloys with 2-3 at.% Sn have been made by ion implantation of Sn in Al. The microstructure of the alloys consists of dense distributions of nanoscale Sn inclusions embedded in the Al matrix. For implantations carried out at 425 K the inclusions have sizes in the range from about 2 to 15 nm. The structure of the inclusions is tetragonal - the white Sn structure – with lattice parameters of a = 0.583 nm and c = 0.318 nm respectively, i.e. identical to the lattice parameters of bulk Sn. The inclusions grow in preferred alignment with the matrix and the most commonly observed orientation relationships is given by (100)Sn ||(111)Al and [010]Sn || [211]Al. The shape of the inclusions is partly faceted and partly rounded with larger flat facets on the {100}Sn/{111}Al interfaces. Melting and solidification of the inclusions, which have been studied by in-situ transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS) in combination with channeling, shows a distinct hysteresis. Melting of the inclusions which is associated with a distinct premelting, takes place in the range from about 430 K to 485 K, i.e. significantly below the bulk melting point of 505 K. The premelting is size dependent and the smallest inclusions melt at the lowest temperatures. Solidification requires a substantial undercooling and takes place from around 400 K with a much weaker size dependence.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase Transitions in Layered Film Systems;Formation and Temperature Stability of the Liquid Phase in Thin-Film Systems;2023-11-26

2. Formation and thermal stability of liquid phase in layered film systems;Vacuum;2015-12

3. Surface and bulk melting of small metal clusters;Philosophical Magazine;2005-10-21

4. Observations of interface premelting at grain-boundary precipitates of Pb in Al;Philosophical Magazine;2004-09

5. Morphology and phase transformation of nanoscaled indium–tin alloys in aluminium;Materials Science and Engineering: A;2004-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3