The Pressure-temperature Phase and Reaction Diagram for Carbon

Author:

Bundy Francis P.

Abstract

ABSTRACTCarbon atoms form very strong bonds to each other, yielding materials like: (i) crystalline graphite, diamond and their many “amorphous” hybrids; (ii) crystalline forms of giant closed–surface molecules such as the fullerenes; and (iii) liquid and gas phases which have molecular contents which are complicated and not yet defined or understood. Because of the high bonding energy the melting and vaporization temperatures of the solid forms are very high, and the activation energies required to transform one solid form to another are large. One consequence is that at lower temperatures the different solid phases may continue to exist metastably far into aP, Tregion in which another solid phase is the thermodynamically stable one.In the thermodynamic sense the vapor pressure line of graphite, the graphite/liquid/vapor triple point, the graphite melting line, the graphite/diamond equilibrium line, and the graphite/diamond/liquid triple point are quite well established. Data for the melting temperature of diamond vs. pressure are sparse and rough, but they indicate that the melting temperature increases with pressure,-in agreement with some theories. Although carbon should transform to a solid metallic state at very high pressures, experimental evidence shows diamond to be stable to over 400GPa, and theoretical calculations indicate that it could be the stable form up to pressures of 1200 to 2300GPa. Attention is given to the solid state transformations which can take place when graphite is compressed and heated along differentP, Tpaths under different conditions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3