Shock Wave Synthesis of Diamond and other Phases

Author:

Decarli Paul S.

Abstract

ABSTRACTShock wave synthesis of diamond was an unexpected result of experiments designed to explore the effects of shock waves on a variety of materials. The initial announcement in 1959 was controversial; shock synthesis of diamond had been shown to be unlikely, on the basis of kinetic arguments. Jamieson confirmed the identification and suggested a diffusionless mechanism, c-axis compression of rhombohedral graphite. Subsequent work has provided strong evidence that shock wave synthesis of cubic diamond is a conventional thermally activated nucleation and growth process. Thermal inhomogeneities provide the requisite high temperatures; quenching via thermal equilibration is implicit in the process. Shock synthesis of adamantine BN phases appears to be quasi-martensitic; a martensitic mechanism may partially account for the Lonsdaleite (hexagonal diamond) observed in some meteorites and in some artificial shock products. Diamond is also formed as a detonation product in oxygen-deficient explosives. The polycrystalline product of shock synthesis is similar to natural carbonado. The association of carbonado with an ancient giant impact crater is noted.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formation of diamond and lonsdaleite in ureilites by impact shock processing of graphite;Meteoritics & Planetary Science;2023-09-29

2. Canyon Diablo lonsdaleite is a nanocomposite containing c/h stacking disordered diamond and diaphite;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-09-11

3. Carbon polymorphs in Frontier Mountain ureilitic meteorites: A correlation with increasing the degree of shock?;Earth and Planetary Science Letters;2023-07

4. Nanodiamond/Conducting Polymer Nanocomposites for Supercapacitor Applications;Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications;2022

5. Origin of micrometer-sized impact diamonds in ureilites by catalytic growth involving Fe-Ni-silicide: The example of Kenna meteorite;Geochimica et Cosmochimica Acta;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3