Author:
Daly George M.,Murata Hideyuki,Merritt Charles D.,Kafafi Zakya H.,Inada Hiroshi,Shirota Yasuhiko
Abstract
AbstractEnhanced performance has been observed for plastic molecular organic light emitting diodes (MOLEDs) consisting of two to four organic layers sequentially vacuum vapor deposited onto patterned indium-tin oxide (ITO) on polyester films. For all device structures studied, the performance of plastic diodes is comparable to or better than their analogs on glass substrates. At 100 A/m2, a luminous power efficiency of 4.4 lm/W and external quantum yield of 2.7% are measured for a device structure consisting of two hole transport layers, a doped emitting layer and an electron transport layer on a polyester substrate. The same device made on a silica substrate has a luminous power efficiency of 3.5 lm/W and external quantum yield of 2.3%. Electrical and optical performance for comparable device structures has been characterized by current-voltage-luminance measurements and electroluminescence spectra collected normal to the emitting surface. In addition, an integrating sphere was used to collect the total light emitted and to determine the optical output coupling on glass versus plastic substrates.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献