Author:
Oder T. N.,Tin C. C.,Williams J. R.,Isaacs-Smith T.,Madangarli V.,Sudarshan T. S.
Abstract
Edge termination is an important aspect in the design of high power p-n junction devices. In this paper, we compare the breakdown characteristics of 4H-SiC p+-n diodes with oxide passivation and with edge termination using either low or high energy ion implantations. N- and p-type epilayers of 4H-SiC were grown by chemical vapor deposition on n+ 4H-SiC wafers. Circular mesa structures of different diameters were patterned and isolated by reactive ion etching. Four types of samples were fabricated. The first group was not implanted or passivated and was left for control. The second type consisted of oxide-passivated diode structures while the third and fourth types were ion implanted with 30 keV Ar+ and 2.2 MeV He+ ions, respectively. The time dependent breakdown characteristics were determined using a fast voltage ramp technique. The reverse bias breakdown voltages and leakage currents of these diodes were different for the different types of the edge termination. Diodes terminated using 2.2 MeV ion implantation yielded the best breakdown characteristics. A majority of the diodes exhibited abrupt breakdown.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献