Optical Imaging Diagnostics for Fusion Plasmas

Author:

Allen S. L.

Abstract

AbstractImaging diagnostics are used for spatially-and temporally-resolved quantitative measurements of plasma properties such as the ionization particle source, particle and energy loss, and impurity radiation in magnetically confined fusion plasmas. Diagnostics equipped with multi-element solid-state detectors (often with image intensifiers) are well suited to the environment of large fusion machines with high magnetic fields and x-ray and neutron fluxes. We have used both conventional (16 ms/frame) and highspeed video cameras to measure neutral deuterium Hα, (6563 Å) emissions from fusion plasmas. Continuous high-speed measurements are made with video cameras operating at 0.1–0.5 ms/frame; gated cameras provide snapshots of 10–100 μs during each 16-ms video frame. Digital data acquisition and absolute intensity calibrations of the cameras enable detailed quantitative source measurements; these are extremely important in determining the particle balance of the plasma. In a linear confinement device, radial transport can be determined from the total particle balance. In a toroidal confinement device, the details of particle recycling can be determined. Optical imaging in other regions of the spectrum are also important, particularly for the divertor region of large tokamaks. Absolutely calibrated infrared cameras have been used to image the temperature changes in the walls and thereby determine the heat flux. Absolutely calibrated imaging ultraviolet spectrometers measure impurity concentrations; both spatial and spectral imaging instruments are employed. Representative data from each of these diagnostic systems will be presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3