Hydrogen Storage Properties of Magnesium Based Nanostructured/Amorphous Composite Materials

Author:

Au Ming

Abstract

ABSTRACTIn this work, nanostructured composite materials Mg-Ni, Mg-Ni-La, Mg-Ni-Ce and Mg-LaNi5 have been synthesized using the mechanical alloying process. The new materials produced have been investigated by X-ray diffraction (XRD), TEM, SEM and EDS for their phase compositions, crystal structure, grain size, particle morphology and the distribution of the catalyst elements. Hydrogen storage capacities and the hydriding-dehydriding kinetics of the new materials have been measured at different temperatures using a Sieverts apparatus. The results show that amorphous/nanostructured composite material Mg50%-Ni50% absorbs 5.89wt% within five minutes and desorbs 4.46% hydrogen within 50 minutes at 250°C respectively. Adding 5% La into Mg-Ni composite materials reduces the starting temperature of hydrogen absorption and desorption from 200°C to 25°C which suggests the formation of unstable hydrides. The composite material Mg80%-LaNi5 20% absorbs 1.96% hydrogen and releases 1.75 wt% hydrogen at 25°C. It is observed that mechanical alloying accelerates the hydrogenation kinetics of the magnesium based materials at low temperature, but a high temperature must be provided to release the absorbed hydrogen from the hydrided magnesium based materials. It is believed the dehydriding temperature is largely controlled by the thermodynamic configuration of magnesium hydride. Doping Mg-Ni nano/amorphous composite materials with lanthanum reduces the hydriding and dehydriding temperature. Although the stability of MgH2 can not be easily reduced by ball milling alone, the results suggest the thermodynamic properties of Mg-Ni nano/amorphous composite materials can be alternated by additives such as La or other effective elements. Further investigation toward understanding the mechanism of additives will be rewarded.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogen behavior in Mg+-implanted graphite;Journal of Materials Research;2006-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3