Abstract
SummaryIn-situ interfacial impedance measurements were used to study the effects of moisture at 80 °C on the interface between oxidized silicon and a diglycidyl ether of bisphenol A (DGEBA) epoxy cured with diethylene triamine (DETA). Using two electrode configurations, admittances attributable to bulk and interfacial conduction processes were distinguished. Bulk impedance measurements followed Randles behavior; conduction in the bulk epoxy was ionic, and was diffusion controlled at low frequencies. Equivalent circuit models were used to demonstrate that an apparent interfacial conduction process was caused by distributed current leakage into the silicon subphase, not a true interfacial conduction path that would indicate water adsorption or interfacial aggregation. However, transitions in diffusivity and bulk epoxy permittivity behavior above a 70-80% relative humidity threshold were observed. Effective epoxy permittivity (∈c) jumped to values indicative of a water cluster induced Maxwell-Wagner relaxation. The humidity threshold corresponds to a level that has been associated with adhesion loss in epoxies. It appears that epoxy adhesion losses result from bulk epoxy property changes at high humidity rather than interfacial bond displacement or delamination.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献