Diffusion-Induced Grain Boundary Migration and Role of Defects

Author:

Chaki T.K.

Abstract

AbstractA model is presented to explain various aspects of diffusion-induced grain boundary migration (DIGM). The driving energies of DIGM are identified as the free energy of mixing and the interface free energy, the former being predominant in most cases of DIGM. The grain boundary migrates due to thermally activated motion of atoms across the interface under the influence of the driving energies. An expression for the velocity of migration is derived. It is shown that this depends parabolically on the solute concentration, in agreement with experimental observations in the case of liquid film migration (LFM), which is analogous to DIGM. Furthermore, the velocity is proportional to lattice diffusivity ahead of the boundary. Recent results of enhancement of DIGM by ion bombardment is explained by radiation-enhanced lattice diffusivity due to introduction of point defects by the ions. The model also explains that diffusion-induced recrystallization (DIR) is due to a free energy decrease associated with the transformation from the amorphous phase in the grain boundary layer to the crystalline phase.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3