Author:
Bluhm Hendrik,Hävecker Michael,Knop-Gericke Axel,Kiskinova Maya,Schlögl Robert,Salmeron Miquel
Abstract
AbstractX-ray photoelectron spectroscopy (XPS) is a quantitative, chemically specific technique with a probing depth of a few angstroms to a few nanometers. It is therefore ideally suited to investigate the chemical nature of the surfaces of catalysts. Because of the scattering of electrons by gas molecules, XPS is generally performed under vacuum conditions. However, for thermodynamic and/or kinetic reasons, the catalyst's chemical state observed under vacuum reaction conditions is not necessarily the same as that of a catalyst under realistic operating pressures. Therefore, investigations of catalysts should ideally be performed under reaction conditions, that is, in the presence of a gas or gas mixtures. Using differentially pumped chambers separated by small apertures, XPS can operate at pressures of up to 1 Torr, and with a recently developed differentially pumped lens system, the pressure limit has been raised to about 10 Torr. Here, we describe the technical aspects of high-pressure XPS and discuss recent applications of this technique to oxidation and heterogeneous catalytic reactions on metal surfaces.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
179 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献