Abstract
AbstractSmooth adhesive pads are found among the arthropods, amphibians (particularly tree frogs), and in some mammals. They are used for dynamic adhesion when an animal is climbing steep or overhanging smooth surfaces. There is a need for strong attachment to avoid falling and easy detachment to enable the animal to move. This article describes the morphology and physical properties of smooth adhesive pads, stressing how there is little variation in structure, within tree frogs at least, even among pads that have evolved independently. This is clear evidence of an optimum design; best adhesion occurs when there is a continuous, thin film of fluid between the pad and the surface. Smooth adhesive pads adhere by wet adhesion, the main force component being capillarity, produced by the air/liquid interface (meniscus) around the edge of each pad. Smooth adhesive pads also produce substantial friction forces, probably because of actual contact between the pad surface and substrate (tree frogs) or non-Newtonian properties of the secreted fluid (insects). This is possible because the fluid layer beneath the pad has an average thickness of only a few nanometers. The article also discusses the scaling of adhesive force with size and, finally, implications for biomimetics.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献