Structural Aspects of Metallic Glasses

Author:

Miracle Daniel B.,Egami Takeshi,Flores Katharine M.,Kelton Kenneth F.

Abstract

AbstractA recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute—solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with “free” and “anti-free” microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static and dynamic structural views is suggested.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3