Quantum well States in Fe (100) Ultrathin Films Observed by Magneto-Optical Effect

Author:

Suzuki Yoshishige,Katayama Toshikazu

Abstract

ABSTRACTWe report on the Magneto-optical Kerr rotation (<φ>K) spectra of ultrathin Fe films on Au or Ag (100) substrates and the φK oscillation due to interlayer thickness in Fe/Au/Fe sandwich films. In 3.5–4.5 eV, a new φK peak appears in the bcc-Fe (100) ultrathin films on the fcc-Au (100) surface and it shifts towards the higher energy side with increasing Fe layer thickness. The absolute value of eXy for 3Å (2ML) thick Fe layers is twice as large as that of bulk Fe at 3.7 eV. The thickness dependence of the transition energy of this new peak in the spectra is well explained by the concept of quantum well states in the Fe ultrathin layers, attributing the new transition to a transition from the majority spin Δ5 band ({px±i py), {dxz±i dyZ}; M=±l) to the Δ1 quantum well states (s, pz, dz2; M=0). The new peak is also observed in the Fe/Au (100) artificial superlattices. Using the εxy obtained experimentally for the Fe ultrathin films and the εxy of literature, we can reproduce the experimental φK spectra of the artificial superlattices by optical calculation. On the other hand, we cannot observe the same behavior for the ultrathin Fe films grown on a fcc-Ag (100) surface and covered by a Au (100) ultrathin film, although the εXy of Fe is different from that of the bulk and shows some structures in 2–3 eV. These structures around 2.5 eV are thought to be due to polarized Au atoms adjacent to an Fe layer.An oscillation of φK as a function of interlayer thickness, d, was observed in photon energy region between about 2.5 and 3.8 eV for the Fe (6Å) /Au (dÅ) /Fe (6A) sandwiched film. The oscillation period was about 10Å (5ML) of Au. The oscillation is thought to be closely related with a formation of spin polarized quantum well states of Δ1 band in Au layers sandwiched by magnetic layers.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference32 articles.

1. Magnetic anisotropy in low-dimensional ferromagnetic systems: Fe monolayers on Ag(001), Au(001), and Pd(001) substrates

2. Wavelength Dependence of Magneto-Optical Kerr Rotation in Co/Cu, Fe/Cu, Co/Au and Fe/Au Compositionally Modulated Multilayered Films

3. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer

4. Spin-polarized photoemission study of epitaxial Fe(001) films on Ag(001)

5. [13]. Suzuki Y. , Katayama T. , Thiaville A. , Sato K. , Taninaka M. , and Yoshida S. , J. Magn. Magn. Matt., in print, Y. Suzuki and T. Katayama, To be published in Proc. of MORIS'92, [Supplement of J. Magn. Soc. Jpn (1993)], M. Hayashi, T. Katayama, Y. Suzuki, M. Taninaka, A. Thiaville, and W. Geerts, Proceedings of MML '92 Kyoto, to be published in J. Magn. Magn. Matt., T. Katayama, Y. Suzuki, M. Hayashi, and A. Thiaville, Proceedings of MML '92 Kyoto, to be published in J. Magn. Magn. Matt‥

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3