Low-Temperature Processing of Sol-Gel Derived Metal Oxide Thin Films using Supercritical Carbon Dioxide Fluid

Author:

Uchida Hiroshi,Fujioka Kaori,Koda Seiichiro

Abstract

ABSTRACTWe demonstrate a novel technique using supercritical carbon dioxide (scCO2) fluid for lowering processing temperature of sol-gel-derived metal oxide thin films. The film processing was performed in a hot-wall closed vessel filled with scCO2 fluid. The effects of fluid temperature and additives on the sol-gel synthesis reaction under scCO2 fluid were also investigated. Precursor films of titanium dioxide (TiO2) prepared on silicon wafer and silica glass by sol-gel coating using Ti-alkoxide were converted to crystalline TiO2 (anatase) films successfully by treatment in scCO2 without additive agent at a fluid pressure of 15 MPa and at a substrate temperature of above 250°C, which is significantly lower than the processing temperature of conventional sol-gel deposition. Furthermore, additive agents such as water (H2O) and nitrogen-oxygen mixture (N2-O2) promoted the decomposition and crystallization of precursor films in scCO2 fluid to form the crystalline TiO2 (anatase) films at a substrate temperature at as low as 200°C although it also produced surface absorbates consisted of hydroxides on the film surface. The experimental results suggested that the hydrolysis and polymerization reactions of Ti-alkoxide in the precursor films were proceeded by the scCO2 processing to form titanium-oxygen (Ti-O) networks and that byproducts such as alcohols were removed from the resulting films.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3