Author:
Kulkarni A.J.,Krishnamurthy K.,Deshmukh S.P.,Mishra R.S.
Abstract
Aging of precipitation hardened alloys results in particle coarsening, which in turn affects the strength. In this study, the effect of particle size distribution on the strength of precipitation-hardened alloys was considered. To better represent real alloys, the particle radii were distributed using the Wagner and Lifshitz and Slyozov (WLS) particle size distribution theory. The dislocation motion was simulated for a range of mean radii and the critical resolved shear stress (CRSS) was calculated in each case. Results were also obtained by simulating the dislocation motion through the same system but with the glide plane populated by equal strength particles, which represent mean radii for each of the aging times. The CRSS value with the WLS particle distribution tends to decrease for lower radii than it does for the mean radius approach. The general trend of the simulation results compares well with the analytical values obtained using the equation for particle shearing and the Orowan equation.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献