Author:
Ryu Ho J.,Chung Kyung H.,Cha Seung I.,Hong Soon H.
Abstract
The creep behaviors of 20 vol% SiCw/2124Al, extruded with different ratios, and SiCp/2124Al, reinforced with 10–30 vol% SiC particles, were investigated to clarify the effects of aspect ratio, alignment, and volume fraction of reinforcement on creep deformation. The effective stresses on the matrix of SiC/Al composites are calculated based on the generalized shear-lag model. The minimum creep rates of SiCw/2124Al extruded with different ratios and SiCp/2124Al reinforced with different volume fractions of SiC particles are found to be similar under a same effective stress on matrix, which is calculated by the generalized shear-lag model. The subgrain sizes in matrices of crept SiC/Al composites are dependent on the effective stress on matrix but not on the applied stress on the composite. It is suggested that the role of SiC reinforcements is to increase the creep resistance of SiC/Al composite by reducing the effective stress on matrix.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献