Epitaxial growth of copper nanowire arrays grown on H-terminated Si(110) using glancing-angle deposition

Author:

Alouach H.,Mankey G.J.

Abstract

We report the growth of epitaxial nanowire arrays using the technique of glancing- angle deposition with substrate rotation. Epitaxial copper nanowire arrays were deposited on H-terminated Si(110) using electron beam evaporation. The nanowire arrays were characterized by x-ray diffraction, atomic force microscopy, and scanning electron microscopy. Individual nanowires were confirmed to be single crystalline by examination with transmission electron microscopy. The epitaxial growth involves twin formation with the epitaxial orientation relationships: Cu(111)//Si(110) with Cu[110]//Si[001] and Cu[110//Si[001] for each of the twins. As the angle of incidence is increased, Cu grows as isolated columns with a spacing that increases as the angle of incidence is increased. However, the thickness limit for epitaxial growth is reduced as the angle of incidence is increased, and it is reduced to approximately 300 nm for a deposition angle of 75°. The x-ray rocking curves for samples deposited at increasing polar angles show steadily improving crystal orientation up to a deposition angle of about 35°. Beyond 65° deposition angle, the rocking curves show significantly sharper split diffraction peaks indicating that there are distinct orientations. In addition, the split peaks have a much lower full width at half maximum. The observed behavior is explained based on arguments involving unidirectional diffusion arising from adatom parallel momentum.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3