Author:
Oyen Michelle L.,Cook Robert F.,Emerson John A.,Moody Neville R.
Abstract
A viscous-elastic-plastic indentation model was extended to a thin-film system, including the effect of stiffening due to a substrate of greater modulus. The system model includes a total of five material parameters: three for the film response (modulus, hardness, and time constant), one for the substrate response (modulus), and one representing the length-scale associated with the film-substrate interface. The substrate influence is incorporated into the elastic response of the film through a depth-weighted elastic modulus (based on a series sum of film and substrate contributions). Constant loading- and unloading-rate depth-sensing indentation tests were performed on polymer films on glass or metal substrates. Evidence of substrate influence was examined by normalization of the load-displacement traces. Comparisons were made between the model and experiments for indentation tests at different peak load levels and with varying degrees of substrate influence. A single set of five parameters was sufficient to characterize and predict the experimental load-displacement data over a large range of peak load levels and corresponding degrees of substrate influence.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献