Author:
Wang C.M.,Azad S.,Thevuthasan S.,Shutthanandan V.,McCready D.E.,Peden C.H.F.
Abstract
Multilayer films of pure ZrO2 and CeO2 were grown using molecular beam epitaxy on a yttria-stabilized zirconia (YSZ) substrate. Distinctive forbidden diffraction spots of (odd, odd, even) type were observed on the selected-area electron-diffraction patterns of the film. Dark-field imaging clearly revealed that these forbidden diffraction spots were solely due to the ZrO2 layers. Comparison of the electron diffraction pattern with that simulated by dynamical calculations suggest that the pure ZrO2 layers possess a cubic structure of space with the group P4 3m oxygen sublattice being displaced diagonally, rather than along the c axis as suggested for YSZ. Our results further suggest that the displacement of the oxygen from the ideal (¼, ¼, ¼) position might have been introduced during the film growth process.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献