Influence of additive composition on thermal and mechanical properties of β–Si3N4 ceramics

Author:

Zhu Xinwen,Hayashi Hiroyuki,Zhou You,Hirao Kiyoshi

Abstract

Dense β–Si3N4 ceramics were fabricated from α–Si3N4 raw powder by gas-pressure sintering at 1900 °C for 12 h under a nitrogen pressure of 1 MPa, using four different kinds of additive compositions: Yb2O3–MgO, Yb2O3–MgSiN2, Y2O3–MgO, and Y2O3–MgSiN2. The effects of additive composition on the microstructure and thermal and mechanical properties of β–Si3N4 ceramics were investigated. It was found that the replacement of Yb2O3 by Y2O3 has no significant effect on the thermal conductivity and fracture toughness, but the replacement of MgO by MgSiN2 leads to an increase in thermal conductivity from 97 to 113 Wm-1K-1and fracture toughness from 8 to 10 MPa m1/2, respectively. The enhanced thermal conductivity of the MgSiN2-doped materials is attributed to the purification of β–Si3N4 grain and increase of Si3N4–Si3N4 contiguity, resulting from the enhanced growth of large elongated grains. The improved fracture toughness of the MgSiN2-doped materials is attributed to the increase of grain size and fraction of large elongated grains. However, the same thermal conductivity between the Yb2O3- and Y2O3-doped materials is related to not only their similar microstructures, but also the similar abilities of removing oxygen impurity in Si3N4 lattice between Yb2O3 and Y2O3. The same fracture toughness between the Yb2O3- and Y2O3-doped materials is consistent with their similar microstructures. This work implies that MgSiN2 is an effective sintering aid for developing not only high thermal conductivity (>110 Wm−1K−1) but also high fracture toughness (>10 MPa m1/2) of Si3N4 ceramics.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3