Length-scale-based hardening model for ultra-small volumes

Author:

Jungk J.M.,Mook W.M.,Cordill M.J.,Chambers M.D.,Gerberich W.W.,Bahr D.F.,Moody N.R.,Hoehn J.W.

Abstract

Understanding the hardening response of small volumes is necessary to completely explain the mechanical properties of thin films and nanostructures. This experimental study deals with the deformation and hardening response in gold and copper films ranging in thickness from 10 to 400 nm and silicon nanoparticles with particle diameters less than 100 nm. For very thin films of both gold and copper, it was found that hardness initially decreases from about 2.5 to 1.5 GPa with increasing penetration depth. Thereafter, an increase occurs with depths beyond about 5–10% of the film thickness. It is proposed that the observed minima are produced by two competing mechanisms. It is shown that for relatively deep penetrations, a dislocation back stress argument reasonably explains the material hardening behavior unrelated to any substrate composite effect. Then, for shallow contacts, a volume-to-surface length scale argument relating to an indentation size effect is hypothesized. A simple model based on the superposition of these two mechanisms provides a reasonable fit to the experimental nanoindentation data.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference21 articles.

1. Length scales for the fracture of nanostructures

2. Interpretations of Indentation Size Effects

3. Nonlinear delamination mechanics for thin films

4. 11 Jungk J.M. , Cordill M.J. , Hoehn J.W. and Gerberich W.W. : Fracture and plasticity in tantalum thin films. Int. J. Fracture (in preparation).

5. Mechanical-properties of coatings and interfaces, in;Fabes;Thin Films: Stresses and Mechanical Properties II,

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3