Defect chemistry and transport properties of BaxCe0.85M0.15O3-δ

Author:

Wu J.,Li L.P.,Espinosa W.T.P.,Haile S.M.

Abstract

The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-δ (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. CITZAF - A package of correction programs for the quantitative electron microbeam x-ray-analysis of thick polished materials, thin-films, and particles;Armstrong;Microbeam Anal.,1995

2. The Effect of Lattice Stress In Ion Conducting Fluorites And Perovskites.;Mogensen;Electrochemical Society Proceedings 2001,2002

3. Recent developments in perovskite-based oxide ion conductors

4. 21. Boukamp B.B. Equivalent Circuit, University of Twente, The Netherlands (1988)

5. Simultaneous doping with La3+ and Y3+ for Ba2+- and Ce4+-sites in BaCeO3 and the ionic conduction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3