Atomic Force Microscopy of Hot Spot Reaction Sites in Impacted RDX and Laser Heated AP

Author:

Sharma J.,Coffey C. S.,Ramaswamy A. L.,Armstrong R. W.

Abstract

AbstractAn atomic force microscope (AFM) has been used to reveal residual sub-micron sized decomposition sites in drop weight impacted RDX and laser irradiated AP crystals. In impacted RDX, the small and early reaction sites observed are hemispherical craters, ranging in size from 20–300 nm. The smallest reaction site encompassed about 10,000 molecules with an expected energy evolution of 2 × 10−14 J. On a somewhat larger scale hillocks of 200–800 nm were observed, their shape giving evidence of internal reaction and hot spot melting. Dislocation densities as high as 5 × 1012 per cm2 were observed in sub-ignited RDX. High resolution AFM images of the RDX lattice structure indicate molecular rotation as well as displacements at dislocation sites. In AP, after nanosecond pulsed laser irradiation, reaction sites were trumpet shaped with a smallest size of approximately 50 nm. Most sites contained a crystallographically oriented central square lid formed above the surrounding crystal surface, probably relating to the orthorhombic to cubic phase transition documented in micron scale cracking patterns observed at the laser heated sites.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3