Compression and Compressive Creep Behaviors in Titanium Aluminides Alloyed with Vanadium comprizing Gamma + Beta Dual Phase Microstructures

Author:

Takahashi Tohru,Kojima Yohji,Otsuka Koshiro

Abstract

AbstractFine grained gamma+beta dual phase microstructures were obtained in aluminum-titanium-vanadium ternary alloys containing 40 at.% aluminum and 60 at.% (titanium and vanadium). Average grain size was about 5, 3, and 2 micrometers in the recrystallized materials containing 20, 30, and 40 at.% vanadium, and the phase constitution was around 50vol.% gamma phase and 50vol.% beta phase. Compression behavior was investigated at temperatures ranging from the room temperature up to 1200K, and compressive creep tests were carried out at 1050-1200K in order to characterize the temperature and chemical composition dependences of strength and deformation. These gamma+beta microduplex materials showed very high strength at room temperature; 0.2% proof stress was around 1200MPa. The compression deformability decreased from about 0.2 to 0.05 true strain with increasing vanadium content. The grain size effect was not clarified yet, but it was rather disappointing that smaller-grained material with Al40Ti20V40 composition did not show effective improvement either in strength or in deformability. 0.2% proof stress showed a considerable weakening at temperatures higher than 900K; the onset temperature of softening became lower as the vanadium content increased. In Al40Ti40V20 material with about 5 micrometer grains, both gamma and beta grains were flattened up to 1000K, however, above 1100K the gamma grain showed no significant shape change even after a heavy deformation. This is probably because the gamma grains were relatively stronger than the beta grains. The gamma grains showed tendency toward agglomeration, which is similar to rafting of precipitate particles. Surface relief was observed after high temperature deformation suggesting activity of boundary sliding on grain boundaries and interfaces. Compressive creep behavior was investigated under a constant true stress in vacuum. Creep curves consisted of a small amount of normal primary transient, the minimum creep rate region, and a steady or slightly accelerating creep region. Stress exponent decreased to about 2 with decreasing vanadium content. It was rather unexpected that smaller grained Al40Ti20V40 material showed larger stress exponent around 3.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. 4. Blackburn M. J. and Smith M. P. , U.S. Patent No. 4 294 615, (13 Oct. 1981).

2. 13. Takahashi T. , Asano K. , Ashida D. , Murakoshi T. and Hasegawa T. , “Thermec 2000, Processing and Manufacturing of Advanced Materials”, CDROM Section E3, Vol.117/3 “Special Issue: Journal of Materials Processing Technology, Elsevier Science, UK”, (2001).

3. Reexamination of the Ti-Al-V Ternary Phase Diagram

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3