Author:
Kishimoto N.,Gritsyna V. T.,Takeda Y.,Lee C. G.,Umeda N.,Saito T.
Abstract
ABSTRACTNanoparticles of Cu were fabricated by negative-ion implantation, leading to spontaneous formation at high beam fluxes. Negative ions, alleviating surface charging, exhibit significant merits in carrying out low-energy implantation at high dose rates. The kinetic processes were studied by measuring dose-rate dependence of colloid formation and resultant optical properties. Negative-Cu ions of 60 keV were implanted into silica glasses at high-current densities, up to 260 μA/cm2, fixing the total dose at 3.0 × 1016 ions/cm2. Spherical nanocrystals of Cu atoms formed within a narrow region, near the projectile range of Cu ions. Simultaneously, much smaller particles spread out beyond a depleted zone, deeper than the projectile range. The nanocrystal growth and optical properties were greatly dependent on the dose rate and the specimen boundary condition. The growth process is explained by a droplet-model based on surface tension and radiation-induced diffusion. Beam-surface interactions also play an important role in the mass transport from the beam flux to the interior solid.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献