Spark plasma sintering of zirconium carbide and oxycarbide: Finite element modeling of current density, temperature, and stress distributions

Author:

Antou Guy,Mathieu Gendre,Trolliard Gilles,Maître Alexandre

Abstract

A combined experimental/numerical approach was developed to determine the distribution of current density, temperature, and stress arising within the sample during spark plasma sintering (SPS) treatment of zirconium carbide (ZrCx) or oxycarbide (ZrCxOy). Stress distribution was calculated by using a numerical thermomechanical model, assuming that a slip without mechanical friction exists at the interfaces between the sample and the graphite elements. Heating up to 1950 °C at 100 °C min−1 and a constant applied pressure of 100 MPa were retained as process conditions. Simulated temperature distributions were found to be in excellent agreement with those measured experimentally. The numerical model confirms that, during the zirconium oxycarbide sintering, the temperature measured by the pyrometer on the die surface largely underestimates the actual temperature of the sample. This real temperature is in fact near the optimized sintering temperature for hot-pressed zirconium oxycarbide specimens. It is also shown that high stress gradients existing within the sample are much higher than the thermal ones. The amplitude of the stress gradients was found to be correlated with those of temperature even if they are also influenced by the macroscopic sample properties (coefficient of thermal expansion and elastic modulus). At high temperature, the radial and angular stresses, which are much higher than the vertical applied stress, provide the more significant contribution to the stress-related driving force for densification during the SPS treatment. The heat lost by radiation toward the wall chambers controlled both the thermal and stress gradients.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3