The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates

Author:

Li Han,Lin Youbo,Tsui Ting Y.,Vlassak Joost J.

Abstract

Integrating porous low-permittivity dielectrics into Cu metallization is one of the strategies to reduce power consumption, signal propagation delays, and crosstalk between interconnects for the next generation of integrated circuits. The porosity and pore structure of these low-k dielectric materials, however, also affect other important material properties in addition to the dielectric constant. In this paper, we investigate the impact of porogen loading on the stiffness and cohesive fracture energy of a series of porous organosilicate glass (OSG) thin films using nanoindentation and the double-cantilever beam (DCB) technique. The OSG films were deposited by plasma-enhanced chemical vapor deposition (PECVD) and had a porosity in the range of 7−45%. We show that the degree of porogen loading during the deposition process changes both the network structure and the porosity of the dielectric, and we resolve the contributions of both effects to the stiffness and fracture energy of the films. The experimental results for stiffness are compared with micromechanical models and finite element calculations. It is demonstrated that the stiffness of the OSG films depends sensitively on their porosity and that considerable improvements in stiffness may be obtained through further optimization of the pore microstructure. The cohesive fracture energy of the films decreases linearly with increasing porosity, consistent with a simple planar through-pore fracture mechanism.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3