Defect Characterization in ZnGeP2 by Time -Resolved Photoluminescence

Author:

Dietz N.,Busse W.,Gumlich H. E.,Ruderman W.,Tsveybak I.,Wood G.,Bachmann K. J.

Abstract

AbstractSteady state and time-resolved photoluminescence (PL) investigations on ZnGeP2 crystals grown from the vapor phase by high pressure physical vapor transport (HPVT) and from the melt by gradient freezing (GF) are reported. The luminescence spectra reveal a broad infrared emission with peak position at 1.2 eV that exhibits features of classical donor-acceptor recombination. The hyperbolic decay characteristic over a wide energy range, investigated from 1.2 eV up to 1.5eV, suggest that this broad emission band is related to one energetic recombination center. Higher energetic luminescence structures at 1.6eV and 1.7eV were revealed after annealing of ZnGeP2 crystals in vacuum for a longer period of time. The emission decay behavior in this energy range is characterized by two hyperbolic time constants, viewed as the supercomposition of the decay from the broad emission center peaked at 1.2eV and additional donor-acceptor recombination emissions at 1.6eV and 1.7eV, respectively. ZnGeP2 crystals grown under Ge-deficient conditions by HPVT show an additional emission structure at 1.8 eV with sharp emission fine structures at 1.778 eV related to the presence of additional donor states.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3