Surface Passivation of p-GaTe Layered Crystals for Improved p-GaTe/n-InSe Heterojunction Solar Cells

Author:

Mandal Krishna C.,Das Sandip,Krishna Ramesh,Muzykov Peter G.,Ma Shuguo,Zhao Feng

Abstract

AbstractGaTe and GaTe:In single crystals were grown from high purity Ga (7N) and zone refined Te (>7N) precursor materials. InSe thin films were deposited by thermal evaporation onto the sulfur passivated GaTe:In substrates at various substrate temperatures from 450K-550K to fabricate p-GaTe:In/n-InSe heterojunction solar cells. Scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and X-ray photoelectron spectroscopy (XPS) were used to characterize GaTe:In crystals and InSe thin film surfaces. The current-voltage characteristics of p-GaTe:In/n-InSe solar cells were measured under dark and under illumination of 75mW/cm2. Dark J-V measurements showed that the reverse saturation current density (J0) decreased from 3.8 x 10-6 A/cm2 to 1.5 x 10-9 A/cm2 and the ideality factor was reduced from 2.04 to 1.15 as a result of surface passivation. Under illumination of 75 mW/cm2, the open-circuit voltage (Voc) increased from 0.54V to 0.68V and short-circuit current density (Jsc) increased from 7.19 mA/cm2 to 8.65 mA/cm2 for solar cells with surface passivated GaTe:In substrates, leading to an increased solar cell efficiency of 5.03%. EPMA measurements revealed that the InSe thin films deposited at 550 K on GaTe:In substrates were near stoichiometric with enhanced grain size contributing also to better solar cell performance.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference18 articles.

1. Effect of surface modification on sub-bandgap response of n-CdTe photoelectrodes

2. Evidence for amphoteric behavior of Ru on CdTe surfaces

3. Effects of surface modification on n-cadmium telluride photoelectrochemical solar cells

4. [3] Xu G. , Sun G. , Ding Y. J. , Zotova I. B. , Mandal K. C. , Mertiri A. , Pabst G. , and Fernelius N.C. , IEEE J. Selected Topics in Quantum Electronics, (2010) in press.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3