Quasi-single Crystal Semiconductors on Glass Substrates Through Biaxially Oriented Buffer Layers

Author:

Lu Toh-Ming,Li Huafang,Gaire Churamani,LiCausi Nicholas,Chan Tzu Liang,Bhat Ishwara,Zhang Shengbai,Wang Gwo Ching

Abstract

AbstractHigh efficiency photovoltaic devices are normally fabricated on single crystalline substrates. These single crystalline substrates are expensive and volume production for widespread usage has not been realistic. To date, large volume production of solar cells is on less expensive non-crystalline substrates such as glass. Typically the films grown on glass are polycrystalline with less than ideal efficiency. It was proposed that a dramatic gain in the efficiency may be achieved if one uses a biaxially oriented buffer layer on glass to grow biaxial semiconductor films to fabricate solar devices compared to that of films grown directly on glass. Biaxial films are not exactly single crystal but have strongly preferred crystallographic orientations in both the out-of-plane and in-plane directions. Typically the misorientation between grains can be small (within a few degrees) and may possess low carrier recombination rate. In this paper we shall discuss growth techniques that would allow one to produce biaxial buffer layers on glass. A specific strategy using an atomic shadowing mechanism in an oblique angle deposition configuration that allows one to grow biaxial buffer layers such as CaF2on glass substrate will be discussed in detail. Results of heteroepitaxy of semiconductor materials such as CdTe and Ge on these biaxial buffer/glass substrates characterized by x-ray pole figure, reflection high energy electron diffraction (RHEED) pole figure and transmission electron microscopy (TEM) will be presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Oblique Angle Deposition of Nanostructures for Energy Applications;Advanced Ceramic Coatings and Materials for Extreme Environments III;2013-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3